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ABSTRACT
The two-dimensional Fourier Transform is a widely-used compu-
tational kernel in many HPC applications. The popular NVIDIA
cuFFT library provides a simple interface to compute 2D FFT on
GPUs, but it’s yet to utilize the recent hardware advancement in
half-precision floating-point arithmetic. In this poster, we propose
a mixed-precision method to accelerate 2D FFT by exploiting the
FP16 matrix-multiply-and-accumulate units on the newest GPU
architecture, known as tensor cores. We achieve a balance between
speed and accuracy by dynamically splitting the single-precision
input data into two half-precision operands and performing FFT
separately. We present a CUDA-based implementation that achieves
3-digit more accuracy than half-precision cuFFT. We also demon-
strate the stability and scalability of our approach and conclude
that it attains high accuracy with tolerable splitting overhead.
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1 INTRODUCTION
The two-dimensional Fourier transform has been extensively used
in many HPC applications, including radar image formulation, big
integer multiplication, and quantum cluster simulation [2, 6, 8]. The
NVIDIA CUDA Fast Fourier Transform library (cuFFT) provides
some simple APIs that perform 2D FFT on the graphics processing
units (GPUs) and achieve 10x performance improvement over pure
CPU implementations [7]. The tensor cores on recent Volta GPU ar-
chitecture considerably increase half-precision floating-point com-
pute throughput, but this has not been fully utilized by cuFFT
library, because FP16 calculation does not fulfill the accuracy re-
quirements of most scientific applications.

To exploit the fast half-precision arithmetic on tensor cores, we
propose a mixed-precision 2D FFT that dynamically splits every
FP32 input into two FP16 elements and performs matrix multipli-
cation in half-precision. This extended abstract will introduce the
distinctive characteristics of tensor cores and fast Fourier transform,
and explain how these characteristics can be leveraged to accelerate
2D FFT. Then in section 4 we evaluate our CUDA-based implemen-
tation through experiments on NVIDIA®Tesla®V100 GPU. We will
demonstrate that our implementation of accelerated FFT achieves
desired accuracy with tolerable splitting overhead.

Figure 1: TheCooley-Tukey 1DFFT algorithm.We adjust the
N1-point DFT kernel to avoid taking transpose in last step.

2 MOTIVATION
A critical feature in the new Volta GPU architecture is tensor core,
the matrix-multiply-and-accumulate unit that significantly accel-
erates half-precision arithmetic. The Tesla®V100 GPU contains
640 tensor cores and delivers up to 125 TFLOPS in FP16 matrix
multiplication [1]. However, the narrow dynamic range of FP16
numbers limits its adoption by scientific computations such as 2D
fast Fourier transform. This accuracy limitation incentivizes us to
design a mixed-precision solution, which is traditionally known
as emulating a double precision number with two single precision
numbers [3].

We apply this method to 2D FFT due to its important role in HPC
applications as well as its numerical properties. The implementation
of 2D FFT involves multiplication of large matrices; the linearity
of 2D FFT allows trivial combination of computational results, and
the numerical stability provides an accuracy guarantee.

3 METHODOLOGY
Our goal is to compute two-dimensional discrete Fourier transform,
defined as:

Y = Fm ∗ X ∗ F⊺n ,
whereX is the inputmatrix of sizem∗n, and Fm , Fn are them∗m and
n ∗ n Fourier matrix, respectively. We implement it by performing
two 1D FFTs on each column, together with a matrix transpose in
between.

We adopt the well-known Cooley-Tukey algorithm to compute
1D FFT, which is illustrated in Figure 1. It reshapes the input length-
N vector to a N1*N2 matrix and performs per-column 1D FFT
recursively [5]. Here N1 is chosen to be four as the 4*4 Fourier
matrix can be accurately represented in FP16. The cuBLAS GEMM
API is called in the base case of recursion and the N1-point FFT to



ALGORITHM 1: Dynamic Splitting pseudo-code
Data: X = [®v1, ..., ®vn ] ; ▷ Data matrix,

{
xi, j

}
Output:
Xhi = [®vh1, ..., ®vhn ] ; ▷ Higher half vectors

Xlo = [®vl1, ..., ®vln ] ; ▷ Lower half vectors

α = [a1, ...,an ] ; ▷ Scaling factors of higher part

β = [b1, ...,bn ] ; ▷ Scaling factors of lower part

for j ← 1 to n do
/* Parallel For implemented with CUDA */

aj = maxmi=1
xi, j;

®vhj = ®vj/aj ; ▷ Cast scaled data to FP16

®r j = ®vj − ®vhj ∗ aj ; ▷ Residual,
{
x̃i, j

}
bj = maxmi=1

x̃i, j;
®vl j = ®r j/bj ; ▷ Cast scaled data to FP16

end

multiply the Fourier matrix and data matrix. The essence of our
method is to split every column vector into two FP16 vectors before
matrix multiplication, so that the multiplication can be carried
out in half precision. Algorithm 1 summarizes how the splitting is
performed.

4 RESULTS
We evaluate our implementation by testing its performance on one
NVIDIA®Tesla®V100 GPU. CUDA events and the nvprof profiler
are used to measure the execution time and analyze the splitting
overhead. We also calculate its deviation from the FP32 cuFFT
results and compare the accuracy with FP16 cuFFT.

Figure 2: The relative error of 2D FFT at different input sizes.

Figure 3: Execution time breakdown at different input sizes.
About 90% of total time is spent on calling the cuBLAS
batched matrix multiplication API.

Figure 2 compares the relative error of half-precision cuFFT and
our implementation. It shows that the dynamic splitting method
achieves 3-digit better accuracy, so the method may satisfy the
requirements of many scientific applications. Figure 3 illustrates
the proportion of time spent on different operations, and indicates
that the overhead of data splitting is tolerable.

In addition, we measure the accuracy of the mixed-precision
method under various settings. The results and implications are
presented on the poster.

5 CONCLUSIONS AND FUTUREWORK
We have designed and implemented a FP32-FP16 mixed-precision
2D FFT that takes advantage of the recent tensor core hardware.
The dynamic splitting method effectively emulates single-precision
calculation and produces highly accurate results from a variety of
inputs.

The speed of current cuBLAS-based implementation is inferior
to cuFFT APIs, but we expect it to gain advantage as the input
size grows, because the tensor core can be fully utilized and the
setup cost can be amortized. In the future we will consider further
optimizing the implementation by customizing the transpose and
matrix multiplication kernels [4]. We may also design an auto-
tuning splitting algorithm that supports ill-conditioned inputs and
causes less overhead.
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